›› 2014, Vol. 20 ›› Issue (5): 1-7.DOI: 10.3969/j.issn.1006-8082.2014.05.001
Online:
2014-09-20
Published:
2014-09-20
通讯作者:
刘群恩
基金资助:
国家自然科学基金(31221004);国家科技支撑计划“水稻新品种培育与扩繁”(2011BAD35B02);抗病转基因水稻新品种培育(2014ZX08001-002);中国农业科学院创新工程
CLC Number:
ZHANG Pei-Sheng-1, ZHAO Chun-De-2, YU Ning-2, ZHANG Ying-Xin-23, LIU Qun-恩2*. Recent Progress on Cloning and Application of Rice Blast Resistance Genes[J]. , 2014, 20(5): 1-7.
张佩胜1, 赵春德2, 余宁2, 张迎信2,3, 刘群恩2*. 稻瘟病抗性基因的克隆及应用研究进展[J]. 中国稻米, 2014, 20(5): 1-7.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zgdm.net/EN/10.3969/j.issn.1006-8082.2014.05.001
[1] Khush G S. What it will take to feed 5.0 billion rice consumers in 2030[J]. Plant mol biol, 2005, 59(1): 1-6.[2] Scheuermann K K, Raimondi J V, Marschalek R, et al. Magnaporthe oryzae genetic diversity and its outcomes on the search for durable resistance[J]. Mol Basis Plant Genet Divers, 2012: 331-356.[3] Shen M, Lin J Y. The economic impact of rice blast disease in China [J]. Rice Blast Disease. RS Zeigler, SA Leong, and PS Teng, eds. CAB International, Wallingford, UK, 1994: 321-331.[4] Notteghem J L. Durable resistance to rice blast disease [M]//Durability of disease resistance. Springer Netherlands, 1993: 125-134.[5] Miah G, Rafii M Y, Ismail M R, et al. Blast resistance in rice: a review of conventional breeding to molecular approaches [J]. Mol Biol Rep, 2013, 40(3): 2369-2388.[6] Wang Z X, Yano M, Yamanouchi U, et al. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine‐rich repeat class of plant disease resistance genes [J]. Plant J, 1999, 19(1): 55-64.[7] Wang Z X, Yamanouchi U, Katayose Y, et al. Expression of the Pib rice-blast-resistance gene family is up-regulated by environmental conditions favouring infection and by chemical signals that trigger secondary plant defences [J]. Plant Mol Biol, 2001, 47(5): 653-661.[8] Bryan G T, Wu K S, Farrall L, et al. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta[J]. Plant Cell, 2000, 12(11): 2033-2046[9] Liu X Q, Lin F, Wang L, et al. The in silico map-based cloning of Pi36, a rice coiled-coil–nucleotide-binding site–leucine-rich repeat gene that confers race-specific resistance to the blast fungus[J]. Genetics, 2007, 176(4): 2541-2549.[10] Chen S, Wang L, Que Z, et al. Genetic and physical mapping of Pi37 (t), a new gene conferring resistance to rice blast in the famous cultivar St. No. 1[J]. Theor Appl Genet, 2005, 111(8): 1563-1570.[11] Lin F, Chen S, Que Z, et al. The blast resistance gene Pi37 encodes a nucleotide binding site–leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1[J]. Genetics, 2007, 177(3): 1871-1880.[12] Qu S, Liu G, Zhou B, et al. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site–leucine-rich repeat protein and is a member of a multigene family in rice [J]. Genetics, 2006, 172(3): 1901-1914.[13] Zhou B, Qu S, Liu G, et al. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea [J]. Mol Plant Microbe In, 2006, 19(11): 1216-1228.[14] Deng Y, Zhu X, Xu J, et al. Map-based cloning and breeding application of a broad-spectrum resistance gene Pigm to rice blast [M]//Advances in Genetics, Genomics and Control of Rice Blast Disease. Springer Netherlands, 2009: 161-171.[15] Wu J L, Fan Y Y, Li D B, et al. Genetic control of rice blast resistance in the durably resistant cultivar Gumei 2 against multiple isolates[J]. Theor Appl Genet, 2005, 111(1): 50-56.[16] Chen X W, Li S G, Xu J C, et al. Identification of two blast resistance genes in a rice variety, Digu [J]. J Phytopathology, 2004, 152(2): 77-85.[17] Chen X, Shang J, Chen D, et al. AB‐lectin receptor kinase gene conferring rice blast resistance [J]. Plant J, 2006, 46(5): 794-804.[18] Fukuoka S, Okuno K. QTL analysis and mapping of pi21, a recessive gene for field resistance to rice blast in Japanese upland rice[J]. Theor Appl Genet, 2001, 103(2-3): 185-190.[19] Fukuoka S, Saka N, Koga H, et al. Loss of function of a proline-containing protein confers durable disease resistance in rice[J]. Science, 2009, 325(5943): 998-1001.[20] Zhai C, Lin F, Dong Z Q, et al. The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication[J]. New Phytol, 2011, 189: 321-334[21] Ashikawa I, Hayashi N, Yamane H, et al.Two adjacent Nucleotide-Binding Site-Leucine-Rich Repeat Class genes are required to confer Pikm-Specific rice blast resistance [J]. Genetics, 2008, 180: 2267-2276.[22] Yuan B, Zhai C, Wang W J, et al. The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes [J]. Theor Appl Genet, 2011, 122: 1017-1028.[23] Sharma T R, Madhav M S, Singh B K, et al. High-resolution mapping, cloning and molecular characterization of the Pi-kh gene of rice, which confers resistance to Magnaporthe grisea [J]. Mol Gen Genomics, 2005, 274: 569-578.[24] Hayashi N, Inoue H, Kato T, et al. Durable panicle blast-resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication [J]. Plant J, 2010, 64(3): 498-510.[25] Okuyama Y, Kanzaki H, Abe A, et al. A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes[J]. Plant J, 2011, 66(3): 467-479.[26] Shang J, Tao Y, Chen X, et al. Identification of a new rice blast resistance gene, Pid3, by genomewide comparison of paired nucleotide-binding site--leucine-rich repeat genes and their pseudogene alleles between the two sequenced rice genomes[J]. Genetics, 2009, 182(4): 1303-1311.[27] Takahashi A, Hayashi N, Miyao A, et al. Unique features of the rice blast resistance Pish locus revealed by large scale retrotransposon-tagging[J]. BMC Plant Biol, 2010, 10: 175.[28] Hayashi K, Yoshida H. Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter[J]. Plant J, 2009, 57(3): 413-425.[29] Zhu X, Chen S, Yang J, et al. The identification of Pi50(t), a new member of the rice blast resistance Pi2/Pi9 multigene family[J]. Theor Appl Genet, 2012, 124(7): 1295-1304.[30] Lee S K, Song M Y, Seo Y S, et al. Rice Pi5-mediated resistance to magnaporthe oryzae resence of two coiled-coil-nucleotide-binding-leucine-rich repeat genes[J]. Genetics, 2009, 181(4): 1627-1638.[31] Hua L, Wu J, Chen C, et al. The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast[J]. Theor Appl Genet, 2012, 125(5): 1047-1055.[32] Andersen J R, Lübberstedt T. Functional markers in plants[J]. Trends Plant Sci, 2003, 8(11): 554-560.[33] 王忠华,贾育林,吴殿星,等. 水稻抗稻瘟病基因 Pi-ta的分子标记辅助选择[J]. 作物学报,2004,30(12): 1259-1265.[34] Jia Y, Singh P. Development of dominant rice blast Pi-ta resistance gene markers[J]. Crop Sci, 2003, 43.[35] Hayashi K, Yasuda N, Fujita Y, et al. Identification of the blast resistance gene Pit in rice cultivars using functional markers [J]. Theor appl genet, 2010, 121(7): 1357-1367.[36] Ramkumar G, Srinivasarao K, Mohan K M, et al. Development and validation of functional marker targeting an InDel in the major rice blast disease resistance gene Pi54(Pik h)[J]. Mol Breeding, 2011, 27(1): 129-135.[37] 刘洋,徐培洲,张红宇,等. 水稻抗稻瘟病 Pib 基因的分子标记辅助选择与应用[J]. 中国农业科学,2008,41(1):9-14.[38] 高利军,邓国富,高汉亮,等. 水稻抗稻瘟病基因 Pi-d2 以基因标签的建立与应用[J]. 西南农业学报,2010,23(1):77-82.[39] Costanzo S, Jia Y. Sequence variation at the rice blast resistance gene Pi-km locus: Implications for the development of allele specific markers [J]. Plant Sci, 2010, 178(6): 523-530.[40] Wang H M, Chen J, Shi Y F, et al. Development and validation of CAPS markers for marker-assisted selection of rice blast resistance gene Pi25[J]. Acta Agronomica Sinica, 2012, 38(11): 1960-1968.[41] 高利军,高汉亮,颜群,等. 4 个抗稻瘟病基因分子标记的建立及在水稻亲本中的分布 [C]//《杂交水稻》编辑部.第1届中国杂交水稻大会论文集,2010.[42] 陈志伟,官华忠,吴为人,等. 稻瘟病抗性基因 Pi-1 连锁 SSR 标记的筛选和应用[J]. 福建农林大学学报:自然科学版,2005,34(1):74-77.[43] 金素娟,柳武革,朱小源,等. 利用分子标记辅助选择改良温敏核不育系 GD-8S 的稻瘟病抗性[J]. 中国水稻科学,2007,21(6):599-604.[44] 殷得所,夏明元,李进波,等. 抗稻瘟病基因 Pi9 的 STS 连锁标记开发及在分子标记辅助育种中的应用[J]. 中国水稻科学,2011,25(1):25-30.[45] 文绍山,高必军. 利用分子标记辅助选择将抗稻瘟病基因 Pi-9 (t) 渗入水稻恢复系泸恢 17[J]. 分子植物育种,2012,10(1):42-47.[46] 曾正明,况浩池,罗俊涛,等. 利用分子标记辅助筛选改良 ‘泸恢 602’稻瘟病抗性的研究[J]. 浙江农业学报,2012,24(1):66-70.[47] Fu C,Wu T, Liu W, et al. Genetic improvement of resistance to blast and bacterial blight of the elite maintainer line Rongfeng B in hybrid rice(Oryza sativa L.) by using marker-assisted selection[J]. African J Biotechnol, 2012, 11(67): 13104-13114.[48] 陈红旗,陈宗祥,倪深,等. 利用分子标记技术聚合 3 个稻瘟病基因改良金 23B 的稻瘟病抗性[J]. 中国水稻科学,2008,22(1):23-27.[49] Hittalmani S, Parco A, Mew T V, et al. Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice [J]. Theor Appl Genet, 2000, 100(7): 1121-1128.[50] Chen X W, Li S G, Ma Y Q, et al. Marker-assisted selection and pyramiding for three blast resistance genes, Pi-d (t) 1, Pi-b, Pi-ta2, in rice [J]. Chin J Biotechnol, 2004, 20(5): 708-714.[51] 李洪亮,李荣田. 稻瘟病抗性基因 Pi1 和 Pi2 的聚合及其育种价值分析[J]. 北方水稻,2010,40(5):7-12.[52] 董巍,李信,晏斌,等. 利用分子标记辅助选择改良培矮 64S 的稻瘟病抗性[J]. 分子植物育种,2010,8(5):853-860.[53] 陈志伟,官华忠,王宗华,等. 利用基因聚合技术改良一个优质水稻不育系的稻瘟病抗性[J]. 福建农林大学学报:自然科学版,2012,41(5):449-454. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||